A distributed cooperative control strategy for doubly fed wind turbine groups in the offshore wind farms was proposed, which was based on Hamilton energy theory to make the closed-loop system globally stable and output synonous. The single-machine model of doubly fed wind turbines was extended to a cluster model with the network topology of wind farms. And the distributed cooperative control was constructed by using the design method of distributed Hamilton systems. Furthermore, considering the actual conditions of the input energy of the practical systems, the distributed cooperative control design method with bounded input was proposed to guarantee the global stability and the output synonization of the closed-loop system. The simulation results show that the distributed cooperative control strategy improves the adaptability of closed-loop systems, and has good control effects under the constraints of bounded input.
KEY WORDS :offshore wind farm; distributed control; doubly fed wind turbine group;Hamiltonian energy method; cooperative control;
本文基于Hamilton能量方法,先對單機系統進行Hamilton實現,獲得雙饋風電機組端口受控耗散Hamilton(port-controlled Hamilton with dissipation,PCH-D)系統模型。為獲得海上風電場風電機群的網絡化模型,引入圖論的一些基本概念,將單機模型拓展為含風電場網絡拓撲的機群模型。基于獲得的模型,定義了風電機群的同步控制問題,進而設計分布式控制策略,使得風電機群通過相互協調達到輸出同步。進一步,考慮到實際系統由于能量有限,控制輸入存在飽和約束,將以上結果推廣到輸入有界的情況,設計相應的協同控制策略。最后,通過仿真分別驗證:在風電機組出現故障、網絡拓撲結構發生變化時,分布式控制策略的有效性;以及通過對比輸入受約束和無約束兩種情況,說明輸入有界協同控制策略的利弊。
[1]葉杭冶.風力發電機組的控制技術[M].2版.北京:機械工業出版社,2006:157-164.YeHangye.Control of the wind turbines[M].2nd ed.Beijing:China Machine Press,2006:157-164(in Chinese).
[2]周志超,王成山,郭力,等.變速變槳距風電機組的全風速限功率優化控制[J].中國電機工程學報,2015,35(8):1837-1844.ZhouZhichao,WangChengshan,GuoLi,et al.Output power curtailment control of variable-speed variable-pitch wind turbine generator at all wind speed regions[J].Proceedings of the CSEE,2015,35(8):1837-1844(in Chinese).
[3]付媛,王毅,張祥宇,等.變速風電機組的慣性與一次調頻特性分析及綜合控制[J].中國電機工程學報,2014,34(27):4706-4716.FuYuan,WangYi,ZhangXiangyu,et al.Analysis and integrated control of inertia and primary frequency regulation for variable speed wind turbines[J].Proceedings of the CSEE,2014,34(27):4706-4716(in Chinese).
[4]李雪明,行舟,陳振寰,等.大型集群風電有功智能控制系統設計[J].電力系統自動化,2010,34(17):59-63.LiXueming,XingZhou,ChenZhenhuan,et al.Design of large clusters of wind power active intelligent control system[J].Automation of Electric Power Systems,2010,34(17):59-63(in Chinese).
[5]陶偉龍,王錫凡,宋卓彥,等.基于定子電壓定向的分頻風電系統多機控制[J].中國電機工程學報,2014,34(31):5477-5484.TaoWeilong,WangXifan,SongZhuoyan,et al.A novel FFAC multi-turbine control scheme based on stator voltage orientation[J].Proceedings of the CSEE,2014,34(31):5477-5484(in Chinese).
[6]Xu YL,ZhangW,Liu WX,et al.Distributed subgradient-based coordination of multiple renewable generators in a microgrid[J].IEEE Transactions on Power Systems,2014,29(1):23-32.
[7]Lu ZX,YeX,QiaoY,et al.Initial exploration of wind farm cluster hierarchical coordinated dispatch based on virtual power generator concept[J].CSEE Journal of Power and Energy Systems,2015,1(2):62-67.
[8]江道灼,谷泓杰,尹瑞,等.海上直流風電場研究現狀及發展前景[J].電網技術,2015,39(9):2424-2431.JiangDaozhuo,GuHongjie,YinRui,et al.Research status and developing prospect of offshore wind farm with pure DC systems[J].Power System Technology,2015,39(9):2424-2431(in Chinese).
[9]王錫凡,衛曉輝,寧聯輝,等.海上風電并網與輸送方案比較[J].中國電機工程學報,2014,34(31):5459-5466.WangXifan,WeiXiaohui,NingLianhui,et al.Integration techniques and transmission schemes for off-shore wind farms[J].Proceedings of the CSEE,2014,34(31):5459-5466(in Chinese).
[10]吳俊,陸宇平.基于網絡通信的多機器人系統的穩定性分析[J].自動化學報,2010,36(12):1706-1710.WuJun,LuYuping.Stability analysis of multi-robot system based on network communication[J].Acta Automatica Sinica,2010,36(12):1706-1710(in Chinese).
[11]He SB,Chen JM,Yau D K Y,et al.Cross-layer optimization of correlated data gathering in wireless sensor networks[J].IEEE Transactions on Mobile Computing,2012,11(11):1678-1691.
[12]洪奕光,翟超.多智能體系統動態協調與分布式控制設計[J].控制理論與應用,2011,28(10):1506-1512.HongYiguang,ZhaiChao.Dynamic coordination and distributed control design of multi-agent systems[J].Control Theory & Applications,2011,28(10):1506-1512(in Chinese).
[13]劉佳,陳增強,劉忠信.多智能體系統及其協同控制研究進展[J].智能系統學報,2010,5(1):1-9.LiuJia,ChenZengqiang,LiuZhongxin.Advances in multi-agent systems and cooperative control[J].CAAI Transactions on Intelligent Systems,2010,5(1):1-9(in Chinese).
[14]van der Schaft A J.L2-gain and passivity techniques in nonlinear control[M].Berlin:Springer-Verlag,1996:92-109.
[15]馬進,席在榮,梅生偉,等.基于Hamilton能量理論的發電機汽門與勵磁非線性穩定控制器的設計[J].中國電機工程學報,2002,22(5):88-93.MaJin,XiZairong,MeiShengwei,et al.Nonlinear stabilizing controller design for the steam-valving and excitation system based on Hamiltonian energy theory[J].Proceedings of the CSEE,2002,22(5):88-93(in Chinese).
[16]WuF,Zhang XP,JuP,et al.Decentralized nonlinear control of wind turbine with doubly fed induction generator[J].IEEE Transactions on Power Systems,2008,23(2):613-621.
[17]WangB,Qian YP,Zhang YM.Robust nonlinear controller design of wind turbine with doubly fed induction generator by using Hamiltonian energy approach[J].Journal of Control Theory & Applications,2013,11(2):282-287.
[18]MesbahiM,EgerstedtM.Graph theoretic methods in multiagent networks[M].New Jersey:Princeton University Press,2010:14-27.
[19]Li CS,Wang YZ.Protocol design for output consensus of port-controlled Hamiltonian multi-agent systems[J].Acta Automatica Sinica,2014,40(3):415-422.
[21]LinW.Input saturation and global stabilization of nonlinear systems via state and output feedback[J].IEEE Transactions on Automatic Control,1995,40(4):776-782.